

Мониторинг ледовых покровов с помощью сигналов навигационных спутников

Д.С. Макаров, Д.В. Харламов, А. В. Сорокин

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА

Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов

11—15 ноября 2019 года. Москва, ИКИ РАН XVII Всероссийская Открытая конференция

Содержание

- Введение.
- Сухой и влажный лед.
- Рефракционная модель ледовых покровов.
- ГНСС-рефлектометрия (ГНСС-Р). Возможности метода в мониторинге ледовых покровов.
- Экспериментальные результаты тестового цикла ГНСС-Р ледового покрова от ледостава до таяния.
- Итоги и выводы.

Введение

- Цикл формирования ледовых покровов рек и озер Сибири от ледостава до полного завершение процесса таяния льда длится 5-6 и более месяцев.
- Практическое использование ледовых покровов достаточно развито: ледовые переправы, зимники, наледи на реках, профессиональный и любительский подледный лов.
- Не редки трагические ситуации переоценки людьми прочности льда в весенний период.
- Известно, что весной ледовый покров даже при зимней толщине становится менее прочным, его кристаллическая структура насыщается водой.
- Необходим и возможен мониторинг состояния ледового покрова с использованием сигналов навигационных спутников.

Сухой и влажный лед

Кристалл (3.11.18 г.)

Кристалл + вода (31.03.19 г.)

Рефракционная модель ледовых покровов

Эффективная комплексная диэлектрическая проницаемость $\varepsilon = \varepsilon' + i\varepsilon''$

Сухой лед (Частоты 1,-1,6 ГГц)

У Холодный лед, t **-20** °C, ε' < 3,188; ε'' ~ 0,003

Лед в диапазоне t от −20 до 0°C, 3,197 + 0,06 t; (субполярные ледники)

■ Плотный лед при t = 0 °C $\epsilon' = 3,19\pm0,04$;

Вода (Частоты 1,-1,6 ГГц)

■ Вода свободная при t=0 °C $\epsilon' \sim 84$; $\epsilon'' \sim 10$

■ Вода поверхностная (частично связанная)

 $\epsilon' < 84$; $\epsilon'' < 10$

Влажный лед как смешанный диэлектрик (вода + лед)

$$(\epsilon'_{BJ})^{\alpha} = W_{J}(\epsilon'_{J})^{\alpha} + W_{B}(\epsilon'_{B})^{\alpha}$$

где $W_{_{\rm J}}$, $W_{_{\rm B}}$ объемные доли льда и воды смеси вода +лед, α – коэффициент, варьируется от 0 до 1 определяется экспериментально или из теоретических предпосылок

Г.С. Бордонский. Характеристики микроволновых свойств пресных ледовых покровов при пластической деформации // 2014. Криосфера Земли, 2014, Т. 18, № 2, с. 24–30

В.М. Котляков, Ю.Я. Мачерет, А.В. Сосновский, А.Ф. Глазовский.

Скорость распространения радиоволн в сухом и влажном снежном покрове // 2017 Лёд и Снег∙ Т. 57, № 1. С 45-56.

Рефракционная модель ледовых покровов

Комплексный показатель преломления среды П (Частоты 1,-1,6 ГГц)

$$n = \alpha + i\beta = \sqrt{\varepsilon}$$
,

где α – коэффициент преломления, β – показатель поглощения модельной среды – влажного льда. Вещественные и мнимые части комплексных значений ϵ и n связаны соотношениями:

$$\epsilon' = \alpha^2 - \beta^2 , \qquad \epsilon'' = 2 \cdot \alpha \cdot \beta ,$$

$$\alpha = \sqrt{(\sqrt{(\epsilon'^2 + \epsilon''^2) + \epsilon'})} / \sqrt{2} , \qquad \beta = \sqrt{(\sqrt{(\epsilon'^2 + \epsilon''^2)})} / \sqrt{2}$$

Коэффициенты α и β влажного льда смесь свободной воды и «сухого» льда определяются в виде:

$$\alpha_{BJ} = W_{J}\alpha_{J} + W_{B}\alpha_{B}, \qquad \beta_{BJ} = W_{J}\beta_{J} + W_{B}\beta_{B},$$

где W_n , $W_{\rm B}$ объемные доли льда и воды в смеси вода + лед.

Существенные различия α и β воды и льда являются чувствительными параметрами отражательных и рассеивающих характеристик ледяных покровов.

Аналитические ресурсы излучения ГНСС в мониторинге земной поверхности

Начало. Радиометрия поверхности океана и определение скорости волн и ветра. Martin-Neira M. A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry, // ESA Journal, 1993, vol.17. — P. 331-355

Развитие. Анализ отраженного и рассеянного излучения аппаратов ГНСС. Сформировано научное направление GNSS –Reflectometry (GNSS-R). Jin S., Cardellach E., Xie F. GNSS Remote Sensing - Springer Dordrecht Heidelberg, **New York, London. - 2014. - 286 p**

Приложения.

Определение влажности почвы, растительных покровов;
Восстановление рельефа отражающей поверхности, толщины и состояния ледовых покрытий водоемов, снежных слоев;
Состояния и соленость поверхности океана;
Непрерывный мониторинг состояния ионосферы и атмосферы.

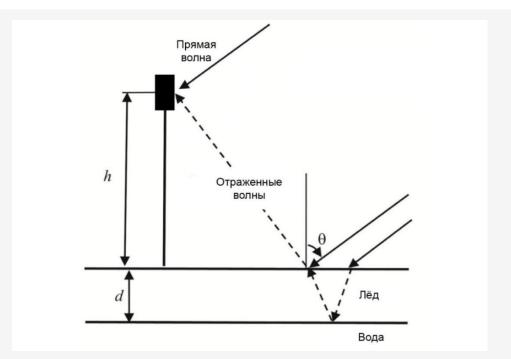
ГНСС и формат данных

Характеристики	GPS	ГЛОНАСС		
Число КА	24	24		
Число орбитальных плоскостей	6	3		
Число КА в каждой плоскости	4	8		
Высота орбиты, км	20 000	19 100		
Наклонение орбиты, град.	55	64,8		
Период обращения КА	11 ч : 58 м	11 ч: 46 м		

4	Α	В	С	D	E	F	G	Н	1
1	№ кадра	№ спутника	Дата	Время	Псевдодальность м	Фазовая псевдодальность, цикл	Азимут	Угол места	Амплитуда
2	6687	23	31.03.2019	13:33:56	18407300.21229608357	696708.27410888671875	-162.8880429131526455	47,99451174	131
3	6688	23	31.03.2019	13:33:57	18407698.34485918656	698800.4564208984375	-162.8930708259478024	47,98711353	138
4	6689	23	31.03.2019	13:33:58	18408096.537660252303	700892.98291015625	-162.89809630695191345	47,97971499	131
5	6690	23	31.03.2019	13:33:59	18408494.785185016692	702985.84779357910156	-162.903119582166795	47,97231603	133
6	6691	23	31.03.2019	13:34:00	18408893.151301272213	705079.19342041015625	-162.90814107438563951	47,96491646	128
7	6692	23	31.03.2019	13:34:01	18409291.623654261231	707173.10841369628906	-162.91316006801872618	47,95751678	149
8	6693	23	31.03.2019	13:34:02	18409690.21704177931	709267.62646484375	-162.91817673227899377	47,95011648	147
9	6694	23	31.03.2019	13:34:03	18410088.899913825095	711362.68312072753906	-162.92319077398656191	47,94271576	128
10	6695	23	31.03.2019	13:34:04	18410487.716384548694	713458.49046325683594	-162.92820283951621718	47,93531456	116
11	6696	23	31.03.2019	13:34:05	18410886.659055057913	715554.96783447265625	-162.93321269951388786	47,92791306	119
12	6697	23	31.03.2019	13:34:06	18411285.674597490579	717651.80274963378906	-162.93822008090455711	47,92051108	129
13	6698	23	31.03.2019	13:34:07	18411684.781718477607	719749.11834716796875	-162.9432252796046896	47,91310851	131
14	6699	23	31.03.2019	13:34:08	18412083.994447998703	721846.96124267578125	-162.94822788937429436	47,9057057	125
15	6700	23	31.03.2019	13:34:09	18412483.318719118834	723945.45512390136719	-162.95322884590066792	47,89830245	126

© А. В. Сорокин, Д.С. Макаров, Д.В. Харламов, 2019 г.

Соотношения геометрических параметров ледовых покровов и длины волны излучения ГНСС диапазона L1 (1,5 -1,6 ГГц)


Характерные средние размеры:

- толщины ледовых покровов водоемов 1cм < **d** < 1- 2 м;
- микрокристаллов льда и микрообъемов воды а ≤ 1см:
- длины волн λ диапазона L 1: GPS 19,04 см, ГЛОНАСС (18,8 -18,9) см

Пресноводные водоемы России: $a/\lambda < 1$, $d/\lambda \sim или > 1$

Схема формирования интерференционного сигнала на приемной антенне

$$R_{H,V}(\theta) = \frac{r_{n,H,V}(\theta) + r_{e,H,V}(\theta)e^{2ik_0dw_n}}{1 + r_{n,H,V}(\theta)r_{e,H,V}(\theta)e^{2ik_0dw_n}},$$

$$r_{n,V}(\theta) = \frac{\varepsilon_{n} \cos \theta - \sqrt{\varepsilon_{n} - \sin^{2} \theta}}{\varepsilon_{n} \cos \theta + \sqrt{\varepsilon_{n} - \sin^{2} \theta}}, \quad r_{e,V}(\theta_{1}) = \frac{\varepsilon_{e} \cos \theta_{1} - \sqrt{\varepsilon_{n}} \sqrt{\varepsilon_{e} - \varepsilon_{n} \sin^{2} \theta_{1}}}{\varepsilon_{e} \cos \theta_{1} + \sqrt{\varepsilon_{n}} \sqrt{\varepsilon_{e} - \varepsilon_{n} \sin^{2} \theta_{1}}},$$

$$r_{n,H}(\theta) = \frac{\cos \theta - \sqrt{\varepsilon_n - \sin^2 \theta}}{\cos \theta + \sqrt{\varepsilon_n - \sin^2 \theta}}, \quad r_{e,H}(\theta_1) = \frac{\varepsilon_n \cos \theta_1 - \sqrt{\varepsilon_e - \varepsilon_n \sin^2 \theta_1}}{\varepsilon_n \cos \theta_1 + \sqrt{\varepsilon_e - \varepsilon_n \sin^2 \theta_1}},$$

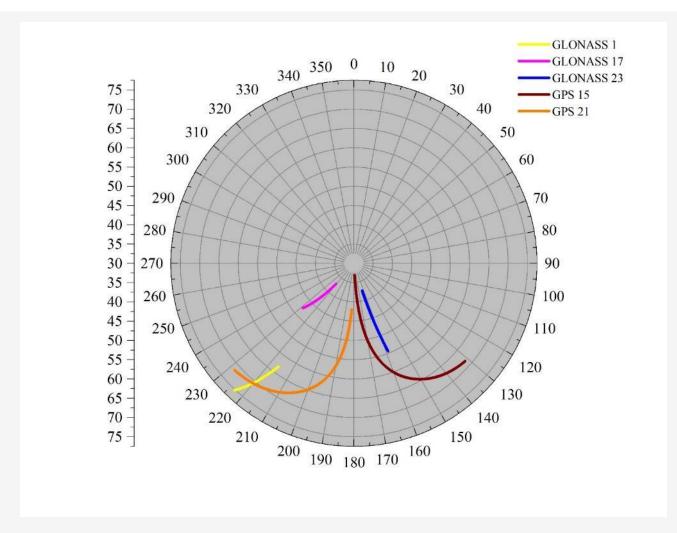
где $\mathbf{r}_{J,H,V}(\mathbf{\theta})$ и $\mathbf{r}_{g,H,V}(\mathbf{\theta})$ – коэффициенты отражения Френеля от границы «воздух – лед» и «лед – вода», \mathbf{k} – волновое число в слое льда, \mathbf{d} – высота ледового покрова, \mathbf{h} – высота антенны над поверхностью льда; $\mathbf{\theta}$ – угол падения электромагнитной волны, приходящей от навигационного спутника.

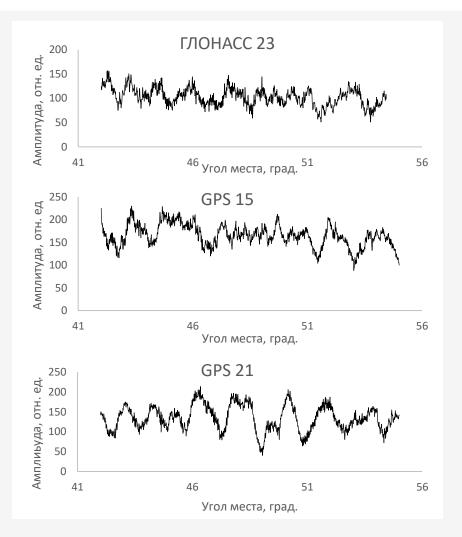
М.И. Михайлов, К.В. Музалевский, В.Л. Миронов. Измерение толщины льда на пресноводном пруде и реке. с использованием сигналов ГЛОНАСС и GPS. Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 2. С. 167–174

Оборудование

- Приемник MPK-32P, изготовитель НПО «Радиосвязь», г. Красноярск ;
- Портативный специализированный четырех канальный приемник-регистратор НСРП-04, изготовитель ООО «Инжиниринговое бюро Феникс», г. Красноярск;
- Комплект антенн приема сигналов с линейной и правокруговой поляризаций;
- Ноутбук;
- Мачта размещения антенн и приемника НСРП-04.

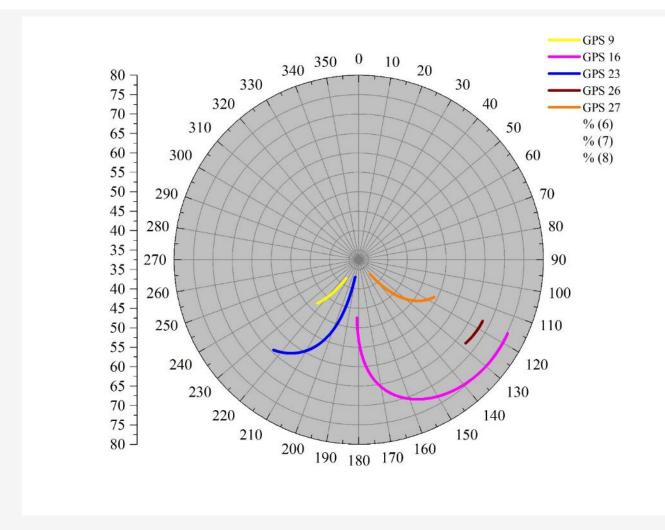
Тестовая площадка

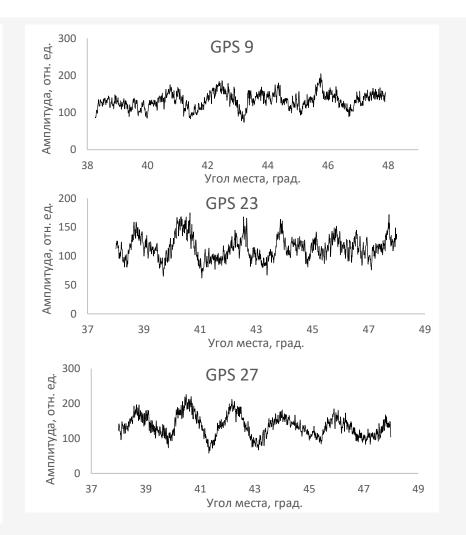


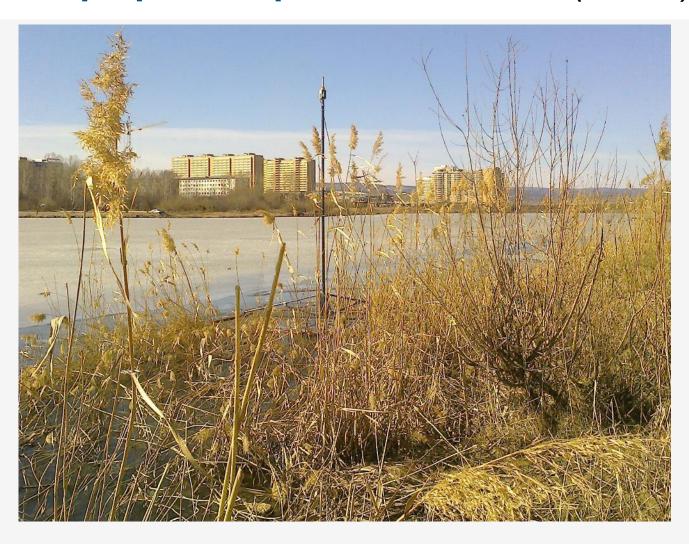

Сцена регистрации интерференционных рефлектограмм 3.11.18 г. (d = 4,2 см)

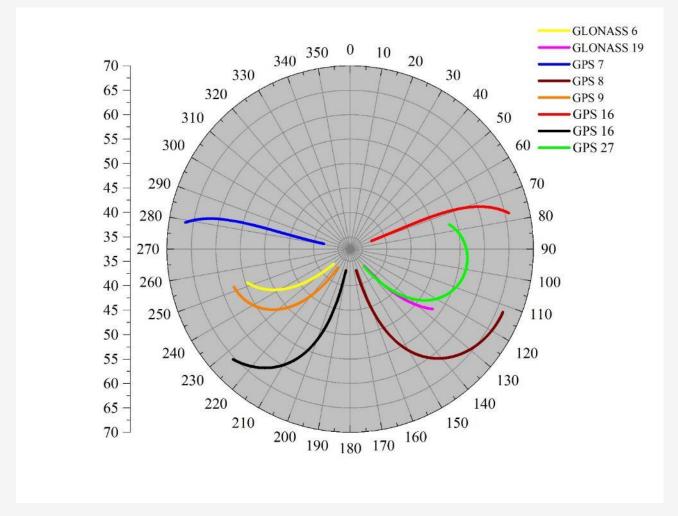
Интерференционные рефлектограммы и полярные диаграммы спутников (3.11.18 г.)

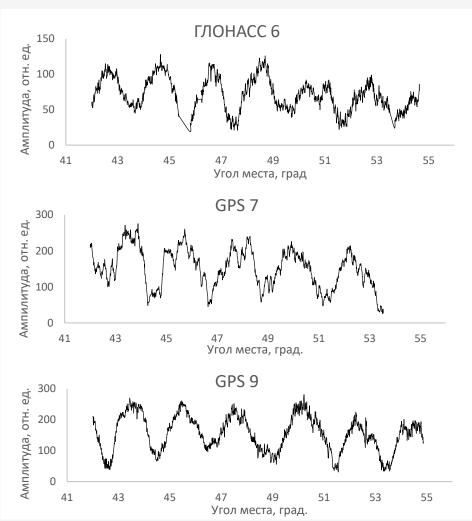
© А. В. Сорокин, Д.С. Макаров, Д.В. Харламов, 2019 г.



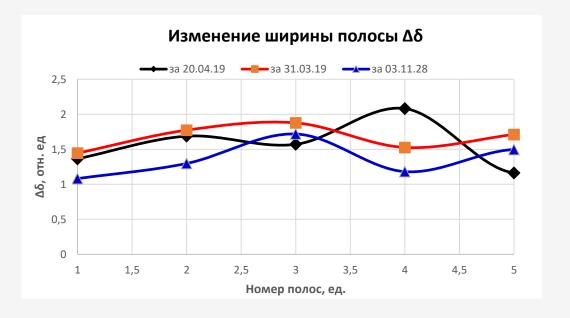

Сцена регистрации интерференционных рефлектограмм 31.03.19г. (d = 105 см)

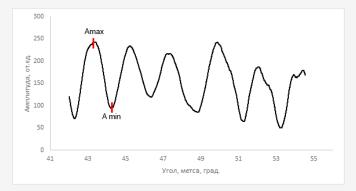

Интерференционные рефлектограммы и полярные диаграммы спутников (31.03.19 г.)




Сцена регистрации интерференционных рефлектограмм 20.04.19 г. (*d* ≤1*m*)

Интерференционные рефлектограммы и полярные диаграммы спутников (20.04.19г.)




© А. В. Сорокин, Д.С. Макаров, Д.В. Харламов, 2019 г.

Изменение контраста и ширины полос интерферограмм

$$K = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Возможность мониторинга состояние ледового покрова

Измеряемые характеристики интерференционных рефлектограмм

- 1. Зависимости ширин и контраста интерференционных полос от регистрируемых в массиве данных углов возвышения и азимута навигационных спутников.
- 2. Координатная привязка места отражения от ледового покрова полярная диаграмма траектории спутника.

Параметры состояния ледового покрова

- 1. Толщина льда.
- 2. Объемная влажность льда.
- 3. Шероховатость поверхности.
- 4. Объемные неоднородности, трещины
- 5. Поверхностные слои снега, воды.
- Сканирование сигналами навигационных спутник ледяных покровов позволяет получит набор интерферограмм с координатной привязкой участка сканирования относительно точки расположения антенны*.
- Зависимости контраста и ширин интерференционных полос связаны с коэффициентом преломления α и показателем поглощения β ледяного покрова, чувствительными к появлению жидкой и связанной воды в объеме льда.
- Возможно восстановление количества воды в объем льда на основе рефракционной модели с учетом особенностей динамики процессов фазового перехода кристаллического льда в жидкое состояние в пресных и соленых водоемах.

^{*} Пат. 2 682 718 Российской Федерации. МПК G01S 19/03 (2010.01) Способ определения коэффициентов погонного ослабления сигналов навигационных космических аппаратов в лесном массиве с координатной привязкой // *Макаров Д.С., Савин И.В., Сорокин А.В., Фомин С.В. Харламов Д.В.* № 2018119448; заявл.25.05.2018; опубл. 21.03.2019, Бюл. № 9. 8 с.

Итоги и выводы

- Проведена серия тестовых измерений интерференционных рефлектограмм ледовых покровов озера вблизи города Красноярск в стадии ледостава (октябрь-ноябрь), стационарном зимнем состоянии (март) и весной, в период прогрева и таяния (апрель). Интервал толщин льда от 4,2 до 105 см.
- Измерения осуществлялись серийным приемником МРК-32Р производства НПО «Радиосвязь» и автономным приемник-регистратор НСРП-04, изготовитель ООО «Инжиниринговое бюро Феникс», г. Красноярск с использованием антенн, принимающих сигналы линейной и правой круговой поляризаций. Приемные антенны устанавливались на льду вблизи берега. Высота расположения фазового центра антенн варьировалась в интервале 3,8 4,4 м.
- Выявлена зависимость контраста и ширин интерференционных полос рефлектограмм от влажности льда, связанной с весенним прогревом ледяного покрова.
- Предложен вариант мониторинга состояния весеннего льда на основе регистрации интерференционных рефлектограмм и восстановления объемной влажности тающего («весеннего») льда с координатной привязкой.

СПАСИБО ЗА ВНИМАНИЕ!